翻訳と辞書
Words near each other
・ Griffin Technology (Diebold subsidiary)
・ Griffin Television Tower Oklahoma
・ Griffin Theatre Company
・ Griffin Township, Pope County, Arkansas
・ Griffin v. California
・ Griffin v. County School Board of Prince Edward County
・ Griffin v. Illinois
・ Griffin v. Maryland
・ Griffin's Foods
・ Griffin's Hill
・ Griffin's leaf-nosed bat
・ Grieshorn
・ Griesingen
・ Grieskirchen
・ Grieskirchen District
Griesmer bound
・ Griess algebra
・ Griess test
・ Griessee
・ Griesstätt
・ Griest
・ Griet
・ Grietenij
・ Griethausen
・ Grietje Jansen-Anker
・ Grietje Staffelt
・ Grietje Vanderheijden
・ Grietman
・ Grievance
・ Grievance (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Griesmer bound : ウィキペディア英語版
Griesmer bound
In the mathematics of coding theory, the Griesmer bound, named after James Hugo Griesmer, is a bound on the length of binary codes of dimension ''k'' and minimum distance ''d''.
There is also a very similar version for non-binary codes.
== Statement of the bound ==
For a binary linear code, the Griesmer bound says:
: n\geq \sum_^ \left\lceil\frac\right\rceil.
== Proof==
Let N(k,d) denote the minimum length of a binary code of dimension ''k'' and distance ''d''. Let ''C'' be such a code.
We want to show that N(k,d)\geq \sum_^ \left\lceil\frac\right\rceil.
Let ''G'' be a generator matrix of ''C''. We can always suppose that the first row of
''G'' is of the form ''r'' = (1, ..., 1, 0, ..., 0) with weight ''d''.
: G= \begin
1 & \dots & 1 & 0 & \dots & 0 \\
\ast & \ast & \ast & & G' & \\
\end
The matrix G' generates a code C', which is called the residual code of C.
C' has obviously dimension k'=k-1 and length n'=N(k,d)-d.
C' has a distance d', but we don't know it.
Let u\in C^ s.t. w(u)=d'. There exists a vector
v\in (F_2)^d s.t. the concatenation (v|u)\in C.
Then w(v)+w(u)=w(v|u)\geq d. On the other hand, also (v|u)+r\in C, since r\in C and C is linear, so w((v|u)+r)\geq d. But
w((v|u)+r)=w(((1,1,...,1)+v)|u)=d-w(v)+w(u),
so this becomes d-w(v)+w(u)\geq d. By summing this with w(v)+w(u)\geq d, we obtain d+2w(u)\geq 2d. But w(u)=d', so we get
d'\geq d/2. This implies n'\geq N(k-1,d/2), therefore n'\geq \left\lceil N(k-1,d/2)\right\rceil (due to the integrality of n'), so that
N(k,d)\geq \left\lceil N(k-1,d/2)\right\rceil +d.
By induction over ''k'' we will eventually get
N(k,d)\geq \sum_^ \left\lceil\frac\right\rceil
(note that at any step the dimension decreases by 1 and the distance is halved, and we use the identity \left\lceil\frac\right\rceil = \left\lceil\frac\right\rceil for any integer ''a'' and positive integer ''k'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Griesmer bound」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.